Part 1
Read the text and answer questions 1–13.
GREYING POPULATION STAYS IN THE PINK
A
Elderly people are growing healthier, happier and more independent, say American scientists.
The results of a 14-year study to be announced later this month reveal that the diseases associated with old age are afflicting fewer and fewer people and when they do strike, it is much later in life.
B In the last 14 years, the National Long-term Health Care Survey has gathered data on the health and lifestyles of more than 20,000 men and women over 65. Researchers, now analysing the results of data gathered in 1994, say arthritis, high blood pressure and circulation problems - the major medical complaints in this age group - are troubling a smaller proportion every year. And the data confirms that the rate at which these diseases are declining continues to accelerate. Other diseases of old age - dementia, stroke, arteriosclerosis and emphysema - are also troubling fewer and fewer people.
C 'It really raises the question of what should be considered normal ageing,' says Kenneth Manton, a demographer from Duke University in North Carolina. He says the problems doctors accepted as normal in a 65-year-old in 1982 are often not appearing until people are 70 or 75.
D Clearly, certain diseases are beating a retreat in the face of medical advances. But there may be other contributing factors. Improvements in childhood nutrition in the first quarter of the twentieth century, for example, gave today's elderly people a better start in life than their predecessors.
E On the downside, the data also reveals failures in public health that have caused surges in some illnesses. An increase in some cancers and bronchitis may reflect changing smoking habits and poorer air quality, say the researchers. These may be subtle influences,' says Manton, 'but our subjects have been exposed to worse and worse pollution for over 60 years.It's not surprising we see some effect'.
F One interesting correlation Manton uncovered is that better-educated people are likely to live longer. For example, 65-year-old women with fewer than eight years of schooling are expected, on average, to live to 82. Those who continued their education live an extra seven years. Although some of this can be attributed to a higher income, Manton believes it is mainly because educated people seek more medical attention.
G The survey also assessed how independent people over 65 were, and again found a striking trend. Almost 80% of those in the 1994 survey could complete everyday activities ranging from eating and dressing unaided to complex tasks such as cooking and managing their finances. That represents a significant drop in the number of disabled old people in the population. If the trends apparent in the United States 14 years ago had continued, researchers calculate there would be an additional one million disabled elderly people in today's population. According to Manton, slowing the trend has saved the United States government's Medicare system more than $200 billion, suggesting that the greying of America's population may prove less of a financial burden than expected.
H The increasing self-reliance of many elderly people is probably linked to a massive increase in the use of simple home medical aids. For instance, the use of raised toilet seats has more than doubled since the start of the study, and the use of bath seats has grown by more than 50%. These developments also bring some health benefits, according to a report from the MacArthur Foundation's research group on successful ageing. The group found that those elderly people who were able to retain a sense of independence were more likely to stay healthy in old age.
I Maintaining a level of daily physical activity may help mental functioning, says Carl Cotman, a neuroscientist at the University of California at Irvine. He found that rats that exercise on a treadmill have raised levels of brain-derived neurotrophic factor coursing through their brains. Cotman believes this hormone, which keeps neurons functioning, may prevent the brains of active humans from deteriorating.
J As part of the same study, Teresa Seeman, a social epidemiologist at the University of Southern California in Los Angeles, found a connection between self-esteem and stress in people over 70. In laboratory simulations of challenging activities such as driving, those who felt in control of their lives pumped out lower levels of stress hormones such as cortisol. Chronically high levels of these hormones have been linked to heart disease.
K But independence can have drawbacks. Seeman found that elderly people who felt emotionally isolated maintained higher levels of stress hormones even when asleep. The research suggests that older people fare best when they feel independent but know they can get help when they need it.
L 'Like much research into ageing, these results support common sense,' says Seeman. They also show that we may be underestimating the impact of these simple factors. 'The sort of thing that your grandmother always told you turns out to be right on target,' she says.
B In the last 14 years, the National Long-term Health Care Survey has gathered data on the health and lifestyles of more than 20,000 men and women over 65. Researchers, now analysing the results of data gathered in 1994, say arthritis, high blood pressure and circulation problems - the major medical complaints in this age group - are troubling a smaller proportion every year. And the data confirms that the rate at which these diseases are declining continues to accelerate. Other diseases of old age - dementia, stroke, arteriosclerosis and emphysema - are also troubling fewer and fewer people.
C 'It really raises the question of what should be considered normal ageing,' says Kenneth Manton, a demographer from Duke University in North Carolina. He says the problems doctors accepted as normal in a 65-year-old in 1982 are often not appearing until people are 70 or 75.
D Clearly, certain diseases are beating a retreat in the face of medical advances. But there may be other contributing factors. Improvements in childhood nutrition in the first quarter of the twentieth century, for example, gave today's elderly people a better start in life than their predecessors.
E On the downside, the data also reveals failures in public health that have caused surges in some illnesses. An increase in some cancers and bronchitis may reflect changing smoking habits and poorer air quality, say the researchers. These may be subtle influences,' says Manton, 'but our subjects have been exposed to worse and worse pollution for over 60 years.It's not surprising we see some effect'.
F One interesting correlation Manton uncovered is that better-educated people are likely to live longer. For example, 65-year-old women with fewer than eight years of schooling are expected, on average, to live to 82. Those who continued their education live an extra seven years. Although some of this can be attributed to a higher income, Manton believes it is mainly because educated people seek more medical attention.
G The survey also assessed how independent people over 65 were, and again found a striking trend. Almost 80% of those in the 1994 survey could complete everyday activities ranging from eating and dressing unaided to complex tasks such as cooking and managing their finances. That represents a significant drop in the number of disabled old people in the population. If the trends apparent in the United States 14 years ago had continued, researchers calculate there would be an additional one million disabled elderly people in today's population. According to Manton, slowing the trend has saved the United States government's Medicare system more than $200 billion, suggesting that the greying of America's population may prove less of a financial burden than expected.
H The increasing self-reliance of many elderly people is probably linked to a massive increase in the use of simple home medical aids. For instance, the use of raised toilet seats has more than doubled since the start of the study, and the use of bath seats has grown by more than 50%. These developments also bring some health benefits, according to a report from the MacArthur Foundation's research group on successful ageing. The group found that those elderly people who were able to retain a sense of independence were more likely to stay healthy in old age.
I Maintaining a level of daily physical activity may help mental functioning, says Carl Cotman, a neuroscientist at the University of California at Irvine. He found that rats that exercise on a treadmill have raised levels of brain-derived neurotrophic factor coursing through their brains. Cotman believes this hormone, which keeps neurons functioning, may prevent the brains of active humans from deteriorating.
J As part of the same study, Teresa Seeman, a social epidemiologist at the University of Southern California in Los Angeles, found a connection between self-esteem and stress in people over 70. In laboratory simulations of challenging activities such as driving, those who felt in control of their lives pumped out lower levels of stress hormones such as cortisol. Chronically high levels of these hormones have been linked to heart disease.
K But independence can have drawbacks. Seeman found that elderly people who felt emotionally isolated maintained higher levels of stress hormones even when asleep. The research suggests that older people fare best when they feel independent but know they can get help when they need it.
L 'Like much research into ageing, these results support common sense,' says Seeman. They also show that we may be underestimating the impact of these simple factors. 'The sort of thing that your grandmother always told you turns out to be right on target,' she says.
Part 2
Read the text and answer questions 14–27.
AUSTRALIA'S SPORTING SUCCESS
A
They play hard, they play often, and they play to win.
Australian sports teams win more than their fair share of titles, demolishing rivals with seeming ease.
How do they do it? A big part of the secret is an extensive and expensive network of sporting academies underpinned by science and medicine.
At the Australian Institute of Sport (AIS), hundreds of youngsters and pros live and train under the eyes of coaches.
Another body, the Australian Sports Commission (ASC), finances programmes of excellence in a total of 96 sports for thousands of sportsmen and women.
Both provide intensive coaching, training facilities and nutritional advice.
B Inside the academies, science takes centre stage. The AIS employs more than 100 sports scientists and doctors, and collaborates with scores of others in universities and research centres. AIS scientists work across a number of sports, applying skills learned in one - such as building muscle strength in golfers - to others, such as swimming and squash. They are backed up by technicians who design instruments to collect data from athletes. They all focus on one aim: winning. 'We can't waste our time looking at ethereal scientific questions that don't help the coach work with an athlete and improve performance,' says Peter Fricker, chief of science at AIS.
C A lot of their work comes down to measurement - everything from the exact angle of a swimmer's dive to the second-by-second power output of a cyclist. This data is used to wring improvements out of athletes. The focus is on individuals, tweaking performances to squeeze an extra hundredth of a second here, an extra millimetre there. No gain is too slight to bother with. It's the tiny, gradual improvements that add up to world-beating results. To demonstrate how the system works, Bruce Mason at AIS shows off the prototype of a 3D analysis tool for studying swimmers. A wire-frame model of a champion swimmer slices through the water, her arms moving in slow motion. Looking side-on, Mason measures the distance between strokes. From above, he analyses how her spine swivels. When fully developed, this system will enable him to build a biomechanical profile for coaches to use to help budding swimmers. Mason's contribution to sport also includes the development of the SWAN (SWimming ANalysis)system now used in Australian national competitions. It collects images from digital cameras running at 50 frames a second and breaks down each part of a swimmer's performance into factors that can be analysed individually - stroke length, stroke frequency, average duration of each stroke, velocity, start, lap and finish times, and so on. At the end of each race, SWAN spits out data on each swimmer.
D Take a look,' says Mason, pulling out a sheet of data. He points out the data on the swimmers in second and third place, which shows that the one who finished third actually swam faster. So why did he finish 35 hundredths of a second down? 'His turn times were 44 hundredths of a second behind the other guy,' says Mason. 'If he can improve on his turns, he can do much better' This is the kind of accuracy that AIS scientists' research is bringing to a range of sports. With the Cooperative Research Centre for Micro Technology in Melbourne, they are developing unobtrusive sensors that will be embedded in an athlete's clothes or running shoes to monitor heart rate, sweating, heat production or any other factor that might have an impact on an athlete's ability to run. There's more to it than simply measuring performance. Fricker gives the example of athletes who may be down with coughs and colds 11 or 12 times a year. After years of experimentation, AlS and the University of Newcastle in New South Wales developed a test that measures how much of the immune-system protein immunoglobulin A is present in athletes' saliva. If IgA levels suddenly fall below a certain level, training is eased or dropped altogether. Soon, IgA levels start rising again, and the danger passes. Since the tests were introduced, AIS athletes in all sports have been remarkably successful at staying healthy.
E Using data is a complex business. Well before a championship, sports scientists and coaches start to prepare the athlete by developing a 'competition model', based on what they expect will be the winning times. 'You design the model to make that time,' says Mason. 'A start of this much, each free-swimming period has to be this fast, with a certain stroke frequency and stroke length, with turns done in these times. ' All the training is then geared towards making the athlete hit those targets, both overall and for each segment of the race. Techniques like these have transformed Australia into arguably the world's most successful sporting nation.
F Of course, there's nothing to stop other countries copying-and many have tried. Some years ago, the AIS unveiled coolant-lined jackets for endurance athletes. At the Atlanta Olympic Games in 1996, these sliced as much as two per cent off cyclists' and rowers' times. Now everyone uses them. The same has happened to the 'altitude tent', developed by AIS to replicate the effect of altitude training at sea level. But Australia's success story is about more than easily copied technological fixes, and up to now no nation has replicated its all-encompassing system.
B Inside the academies, science takes centre stage. The AIS employs more than 100 sports scientists and doctors, and collaborates with scores of others in universities and research centres. AIS scientists work across a number of sports, applying skills learned in one - such as building muscle strength in golfers - to others, such as swimming and squash. They are backed up by technicians who design instruments to collect data from athletes. They all focus on one aim: winning. 'We can't waste our time looking at ethereal scientific questions that don't help the coach work with an athlete and improve performance,' says Peter Fricker, chief of science at AIS.
C A lot of their work comes down to measurement - everything from the exact angle of a swimmer's dive to the second-by-second power output of a cyclist. This data is used to wring improvements out of athletes. The focus is on individuals, tweaking performances to squeeze an extra hundredth of a second here, an extra millimetre there. No gain is too slight to bother with. It's the tiny, gradual improvements that add up to world-beating results. To demonstrate how the system works, Bruce Mason at AIS shows off the prototype of a 3D analysis tool for studying swimmers. A wire-frame model of a champion swimmer slices through the water, her arms moving in slow motion. Looking side-on, Mason measures the distance between strokes. From above, he analyses how her spine swivels. When fully developed, this system will enable him to build a biomechanical profile for coaches to use to help budding swimmers. Mason's contribution to sport also includes the development of the SWAN (SWimming ANalysis)system now used in Australian national competitions. It collects images from digital cameras running at 50 frames a second and breaks down each part of a swimmer's performance into factors that can be analysed individually - stroke length, stroke frequency, average duration of each stroke, velocity, start, lap and finish times, and so on. At the end of each race, SWAN spits out data on each swimmer.
D Take a look,' says Mason, pulling out a sheet of data. He points out the data on the swimmers in second and third place, which shows that the one who finished third actually swam faster. So why did he finish 35 hundredths of a second down? 'His turn times were 44 hundredths of a second behind the other guy,' says Mason. 'If he can improve on his turns, he can do much better' This is the kind of accuracy that AIS scientists' research is bringing to a range of sports. With the Cooperative Research Centre for Micro Technology in Melbourne, they are developing unobtrusive sensors that will be embedded in an athlete's clothes or running shoes to monitor heart rate, sweating, heat production or any other factor that might have an impact on an athlete's ability to run. There's more to it than simply measuring performance. Fricker gives the example of athletes who may be down with coughs and colds 11 or 12 times a year. After years of experimentation, AlS and the University of Newcastle in New South Wales developed a test that measures how much of the immune-system protein immunoglobulin A is present in athletes' saliva. If IgA levels suddenly fall below a certain level, training is eased or dropped altogether. Soon, IgA levels start rising again, and the danger passes. Since the tests were introduced, AIS athletes in all sports have been remarkably successful at staying healthy.
E Using data is a complex business. Well before a championship, sports scientists and coaches start to prepare the athlete by developing a 'competition model', based on what they expect will be the winning times. 'You design the model to make that time,' says Mason. 'A start of this much, each free-swimming period has to be this fast, with a certain stroke frequency and stroke length, with turns done in these times. ' All the training is then geared towards making the athlete hit those targets, both overall and for each segment of the race. Techniques like these have transformed Australia into arguably the world's most successful sporting nation.
F Of course, there's nothing to stop other countries copying-and many have tried. Some years ago, the AIS unveiled coolant-lined jackets for endurance athletes. At the Atlanta Olympic Games in 1996, these sliced as much as two per cent off cyclists' and rowers' times. Now everyone uses them. The same has happened to the 'altitude tent', developed by AIS to replicate the effect of altitude training at sea level. But Australia's success story is about more than easily copied technological fixes, and up to now no nation has replicated its all-encompassing system.
Part 3
Read the text and answer questions 28–40.
TITLE 3
A
PARA3
edame
edame